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Simulation of Bead-and-Spring Chain Models for 
Semidilute Polymer Solutions in Shear Flow 

S. W. Fe t sko  2 and P. T.  C u m m i n g s  ~ 5 

We report preliminary rcsuhs of simulations of the steady-state rheological 
behavior Ibr scmidilutc polymer solutions of bead-and-spring chain models in 
phmar Coucttc flow. The simulations include examination of tile effects of 
excluded volume, hydrodynamic interactions, and density. Hydrodynamic inter- 
actio,as are modeled by the Rotne-Prager Yanlakawa tensor. Tile simulations 
arc based on the nonequilibrium Brownian dynamics algorithm of Erlnak and 
McCammon. In addition to the spring potential between neighboring beads in 
the chain, the interaction between any two beads in the solution is modeled 
using a shifted, repulsive Lenuard Jones potential. Lees Edward sliding brick 
boundary conditions arc used Ibr consistency with tile Couette flow field. 

KEY WORDS: Brownian dyrtamics: rhcolc, gy: semidilute pc, lymer sc, lutions: 
viscosity. 

1. I N T R O D U C T I O N  

M a n y  s tud i e s  o f  the  d y n a m i c s  of  p o l y m e r i c  l iqu ids  h a v e  focused  p r i m a r i l y  

on  the  inf in i te ly  d i lu t e  a n d  mel t  r eg imes  [1 ,  2 ] .  In c o n t r a s t ,  few s tud ie s  

have  e x p l o r e d  the  c o n c e n t r a t i o n  reg imes  b e t w e e n  these  two  ex t r emes .  O f  

in te res t  in th i s  p a p e r  is the  s e m i d i l u t e  reg ion ,  w h e r e  the  p o l y m e r  c h a i n s  
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interact with one another, but the density is low enough that entanglements 
between the chains are considered negligible. 

The purpose of this study is to model the behavior of semidilute 
polymer solutions using nonequilibrium Brownian dynamics (NEBD). 
NEBD has been shown to model effectively the behavior of bead-and-spring 
chains at infinite dilution in both planar Couette and elongational flow 
[3-6]. At the finite dilutions reported in this paper, NEBD simulations of 
bead-and-spring models for polymer solutions are performed with inter- 
actions between bonded beads modeled by the finitely extensible nonlinear 
elastic (FENE) potential (see below), with the interactions between all 
beads (bonded and non-bonded) modeled by a shifted, repulsive Lennard- 
Jones potential (see below), and with Lees-Edward sliding brick boundary 
conditions applied to the finite-sized simulation cell [7]. By means of this 
technique, the effects of excluded volume (EV), hydrodynamic interactions 
(HI), and density on the rheoiogical properties can be studied. 

Prior modeling of the interactions between beads in a semidilute 
polymer solution by means of a repulsive potential has been reported by 
Hess [8] and Ng and Leai [9] in their interacting dumbbell model. With 
this model they were able to predict shear-thinning of both the viscosity 
and the first normal stress coefficient, in agreement with experimental 
observations on semidilute polymer solutions [10]. 

Bead-and-spring models have also been used in studies of the rheologi- 
cal properties of melts. Grest and Kremer [11, 12] used a molecular 
dynamics approach, where each monomer was weakly coupled to a fric- 
tional background and a heat bath, to study melt behavior, including the 
crossover from Rouse to reptation dynamics. Bitsanis and Hadziannou [3] 
used molecular dynamics to study the structure and dynamics of confined 
polymer melts. Rudisili and Cummings [14] used nonequilibrium 
molecular dynamics (NEMD) to calculate the rheological properties of 
melts of rigid and FENE dumbbells with Lennard-Jones interactions 
between beads in different molecules. Dlugogorski et al. [15, 16] have also 
performed NEMD simulations of FENE dumbbells with Lennard-Jones 
interactions. 

Our simulation algorithm, as described in Section 2, enables us to 
study the rheologicai behavior in the concentration range between infinite 
dilution and melts. The results from the simulation study are presented in 
Section 3 and their significance is discussed in Section 4. 

2. M E T H O D S  

We employ the position Langevin level BD simulation algorithm of 
Ermak and McCammon [17] as modified by Diaz et al. [18] to include 
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the effects of a solvent flow field. The major details of the simulation algo- 
rithm have been described in previous papers I-3-5-1. The key assumptions 
of this algorithm are that the solvent is Newtonian, the solvent is con- 
figurationally and kinetically equilibrated on the time scale of the solvent 
motion, and the peculiar (nonstreaming) velocity of the solute molecules is 
at kinetic equilibrium (Maxwell-Boitzmann distribution) due to frequent 
collisions with solvent molecules. The additions required to model semi- 
dilute polymer solutions are presented here. 

The first addition required is to model the repulsive interactions 
between any two beads in the solution. As mentioned previously, this is 
done by means of a shifted, truncated Lennard-Jones potential. The 
potential and force law are 

and 

ULj(r) = 4e I(~.LJ)'2 -- (~-.Lj)6 + ~] ,  

ULj(r)=0, 

r ~< 21/60"Lj ( 1 ) 

r > 2 1/60"Lj (2) 

where ULj(I" ) is the potential, 7 is the vector between the centers of the 
adjacent beads, r =  I~, FLj(~') is the force, e is the Lennard-Jones energy 
parameter, and O'Lj is the Lennard-Jones length parameter. The interaction 
between neighboring beads in a molecule is given by the FENE potential 

UVENE(Q) = -- ~ HQo ln(1 - QZ/Qo), 

UVENE(Q ) = WJ, 

and force law 

F(Q) = 
1 - Q 2 / Q ~  ' 

Q < Q o  (6) 

where ~) is the vector joining the centers of the two beads, Q = 141, and Qo 
is the maximum extension of the bond. The FENE potential reduces to the 
Hookean spring potentials as Q--* 0 with spring constant H. 

The Lees-Edward sliding-brick version of periodic boundary condi- 
tions [7] is used to replicate the central simulation cell infinitely in the x, 
y, and z directions. The simulation cells above and below the central 
simulation cell in the y direction are moved with a velocity that is deter- 
mined by ~, the shear rate. The minimum-image convention is used to 

Q < Qo (4) 

Q > Q o  (5) 

14 ( )81 ffLj(7) -24t3 2 -- - - ,  r ~< 21/60"Lj (3) 
O'Lj O'Lj 
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calculate the forces and diffusion tensor based on tile closest image to the 
chosen bead. Periodic imaging is used to place a po lymer  chain back in tile 
central s imulation cell if its center of mass leaves the cell. 

With these modifications, the rheological propert ies  can be calculated 
using Kramers" expression for the stress tensor [1, 19], which is 

"t = - q ~ 7 - n ( R F )  +nkH T! (7) 

where ~1~ is the solvent viscosity, ;, is the rate of strain tensor, which for 
shear flow has all componen t s  zeros except 7,-,. = 7,..,.- - ~ ,  n is the number  
density of chains, k~ is Bol tzmann 's  constant .  T is the absolute  tem- 
perature,  I is the unit tensor, and ( . . . )  denotes an ensemble average,  given 
by 

( R F )  = 
~timcslcpS 

The shear viscosity may be expressed in terms of the stress tensor as 

i 1 - -r,.,./;" = ii~ + n(R. , .F , . ) /¢  (8) 

The dinaensionless viscosity is defined as 

~l-II~ ( R " F " )  (9) 
nkl~ T;-H kl~ T;.n') 

where 2 .  = ~ /4H is a characterist ic time and ~ is the t ranslat ional  friction. 
F rom the stress tensor, the first normal  stress coefficient 

~', _ n[  (R,.F,.).,~- ( R " F " ) ]  (10) 
g 

can be calculated. The dimensionless first normal  stress coefficient is given 
by 

~ ,  ( R , . F , . ) - ( B . , . F , . )  (11) 
2nk t3 T). ~I 2k B T). ~I "~;~- 

The results in this paper  are given in terms of the dimensionless viscosity 
and first normal  stress coefficient. 

3. R E S U L T S  

In this preliminary report of our work,  we focus exclusively on a 
solution of F E N E  dumbbells .  The parameters for the F E N E  dumbbel ls  are 
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Fig. I. Shear rate dependence of the viscosity for FENE dumbbells with 
h = 67.5. 

those used by Gres t  and  Kremer  [11 ] to minimize the possibi l i ty  of bond  
crossings. The  pa rame te r s  descr ibing the s imula t ion  condi t ions  are given in 
reduced units: All lengths are given in units of the bead d iameter  a, masses 
in units of the bead mass  m, and energies in units of / , '~  T. In these units, 
tile spr ing cons tan t  is given by H =  30, the L e n n a r d - J o n e s  d iameter  by 
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Fig. 2. Shear rate dependence of the first normal stress cofficient for FENE 
dumbbells with h = 67.5. 
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aLJ = 1, the Lennard-Jones energy by ~, = 1, and the maximum spring exten- 
sion by Qo = 1.5. The resulting FENE parameter  is hFENE = HQ~/k~ T= 67.5. 

Figure 1 shows the viscosity as a function of shear rate for the cases 
where EV and HI are not included, when EV but not HI is included, and 
when EV and HI are included. Figure 2 shows the first normal stress 
coefficient as a function of shear rate for the same three cases. All these results 
are for dumbbells at a dimensionless density of 0.01. The results at other den- 
sities are qualitatively similar. For all three cases, shear thinning behavior is 
observed in both the viscosity and the first normal stress coefficient. At low 
shear rates, the case where EV and HI are not included produces the lowest 
values for the viscosity and first normal stress coefficient. When EV is added, 
the range of bead-bead separations possible for bonded beads is reduced and 
the rheological properties increase. The inclusion of HI does not significantly 
affect the rheological properties at low shear rates since the reduction in drag 
caused by the hydrodynamic effect is minimal for dumbbells. We expect that 
it will be more significant for longer chains. At high shear rates, however, 
extra hydrodynamic drag is produced and the result is an increase in the 
viscosity and firts normal stress cofficient when HI is added [20-22].  

Figure 3 shows the viscosity as a function of density for three different 
shear rates. The results are for the case where EV and HI are not included. 
For comparison the density of an infinitely dilute ( p * = 0 )  solution of 
dumbbells is also shown. At the lower densities, the viscosities are relatively 
insensitive to density, while at the higher densities the viscosity exhibits 
stronger density dependence, increasing with density as expected. 
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4. CONCLUSIONS 

Preliminary results of Brownian dynamics simulations for semidilute 
polymer solutions of bead and spring chains undergoing shear flow have been 
presented. The effects of excluded volume, hydrodynamic interactions, and 
density have been studied. The predicted results are in qualitative agreement 
with experimental observations. Further study of the effect of chain length 
and of the time-dependent behavior is being performed. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the support of this research by the 
National Science Foundation through Grant CTS-910136. 

REFERENCES 

1. R. B. Bird, R. C. Armstrong, and O. Hassager, Dymmffc.~" ~f Polymeric Liquids." Fhdd 
Mechanics, I'ol. I, 2nd ed. (Wiley, New York, 1987). 

2. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics ~!fPolymeric Liquids: 
Kim'tic Theory, I'ol. 2, 2nd ed. (Wile',', New York, 1987). 

3. J. W. Rudisill and P. T. Cummings,  J. Non-Newt. Fluid Mech. 41:275 (1991). 
4. J. W. Rudisill. S. W. Fetsko, and P. T. Cumings,  Comp. Polym. Sci. 3:23 (19931. 
5. S. W. Fetsko and P. T. Cummings, submitted for publication (19941. 
6. B. H. A. A. wm den Brule, J. Non-Newt. Fhdd Mech. 47:357 (1993). 
7. A. W. Lees and S. F. Edwards. J. Phys. C Solid State 5:1921 11972). 
8. W. Hess, Rheol...Iota 23:477(1984). 
9. R. C.-Y. Ng and L. G. Leal, Rheol..,Icm 32:25 ( 1993}. 

10. W. W. Graessley, Adv. Polym. Sci. 16:1 (19741. 
11. G. S. Grest and K. Kremer, Phys. Rec. ,4 33:3628 11986). 
12. K. Kremer, G. S. Grest, and I. Carmesin. Phys. Rec. Lett. 61:566 (1988). 
13. I. Bitzanis and G. Hadziioannou, J. Chem. Phys. 92:3827 [1990). 
14. J. W. Rudisill and P. T. Cummings,  Rheol. Acta 30:33 ( 1991 ). 
15. B. Z. Dlugogorski. I. Grmela, and P. J. Carreau, J. Non-Newt. FI. Mech. 48:303 (19931. 
16. B. Z. Dlugogorski, I. Grmela, and P. J. Carreau, J. Non-Newt. FI. Mech. 49:23 (1993}. 
17. D. L. Ermak and J. A. McCammon,  J. Chem. Phys. 69:1352 (1978). 
18. F. G. Diaz, J. Garcia de la Torre, and J. J. Freire, Polymer 30:259 (1989). 
19. H. A. Kramers,  Physica I1:1 (1944). 
20. A. Peterlin, Makromol. Chem. 44:338 [1961 ). 
21. A. Peterlin, J. Chem. Ph.vs. 33:1799 (1960). 
22. A. J. Kishbaugh and A. J. McHugh,  J. Non-Newt. Fhdd Mech. 34:181 11990). 


